Short-term load forecasting without meteorological data using AI-based structures
نویسندگان
چکیده
STLF is used in making decisions about economical power generation capacity, fuel purchasing, safety assessment, and power system planning in order to have economical power conditions. In this study, Turkey’s 24-hourahead load forecasting without meteorological data is studied. ANN, wavelet transform and ANN, wavelet transform and RBF NN, and EMD and RBF NN structures are used in STLF procedures. Local holidays’ historical load data are changed into data with normal day characteristics, and the estimation results of these days are not included in error computation. To obtain more accurate results, a regulation on forecasted loads is proposed. Regulated and unregulated forecasting error percentages are computed as daily average MAPE and maximum daily MAPE, and compared between the proposed structures. A simulation is performed for the years 2009–2010 via the user interface created using MATLAB GUI.
منابع مشابه
Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملShort Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study
Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...
متن کاملShort term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملForecasting Natural Gas Demand Using Meteorological Data: Neural Network Method
The need for prediction and patterns of gas consumption especially in the cold seasons is essential for consumption management and policy planning decision making. In residential and commercial uses which account for the bulk of gas consumption in the country the effects of meteorological variables have the highest impact on consumption. In the present research four variables include daily ave...
متن کاملShort Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression
The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, t...
متن کامل